PEP-FOLD: an online resource for de novo peptide structure prediction
نویسندگان
چکیده
Rational peptide design and large-scale prediction of peptide structure from sequence remain a challenge for chemical biologists. We present PEP-FOLD, an online service, aimed at de novo modelling of 3D conformations for peptides between 9 and 25 amino acids in aqueous solution. Using a hidden Markov model-derived structural alphabet (SA) of 27 four-residue letters, PEP-FOLD first predicts the SA letter profiles from the amino acid sequence and then assembles the predicted fragments by a greedy procedure driven by a modified version of the OPEP coarse-grained force field. Starting from an amino acid sequence, PEP-FOLD performs series of 50 simulations and returns the most representative conformations identified in terms of energy and population. Using a benchmark of 25 peptides with 9-23 amino acids, and considering the reproducibility of the runs, we find that, on average, PEP-FOLD locates lowest energy conformations differing by 2.6 A Calpha root mean square deviation from the full NMR structures. PEP-FOLD can be accessed at http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD.
منابع مشابه
PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides
In the context of the renewed interest of peptides as therapeutics, it is important to have an on-line resource for 3D structure prediction of peptides with well-defined structures in aqueous solution. We present an updated version of PEP-FOLD allowing the treatment of both linear and disulphide bonded cyclic peptides with 9-36 amino acids. The server makes possible to define disulphide bonds a...
متن کاملA fast method for large-scale De Novo peptide and miniprotein structure prediction
Although peptides have many biological and biomedical implications, an accurate method predicting their equilibrium structural ensembles from amino acid sequences and suitable for large-scale experiments is still missing. We introduce a new approach-PEP-FOLD-to the de novo prediction of peptides and miniproteins. It first predicts, in the terms of a Hidden Markov Model-derived structural alphab...
متن کاملPEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex
Structure determination of linear peptides of 5-50 amino acids in aqueous solution and interacting with proteins is a key aspect in structural biology. PEP-FOLD3 is a novel computational framework, that allows both (i) de novo free or biased prediction for linear peptides between 5 and 50 amino acids, and (ii) the generation of native-like conformations of peptides interacting with a protein wh...
متن کاملPEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces
Peptide-protein interactions are important to many processes of life, particularly for signal transmission or regulatory mechanisms. When no information is known about the interaction between a protein and a peptide, it is of interest to propose candidate sites of interaction at the protein surface, to assist the design of biological experiments to probe the interaction, or to serve as a starti...
متن کاملSequential search leads to faster, more efficient fragment-based de novo protein structure prediction.
Motivation Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. Results We have investigated whether a pseudo-greedy search approach, which begins se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 37 شماره
صفحات -
تاریخ انتشار 2009